EE 508 Lecture 2

Filter Design Process

Filter design field has received considerable attention by engineers for about 8 decades

- Passive RLC
- Vacuum Tube Op Amp RC
- Active Filters (Integrated op amps, R,C)
- Digital Implementation (ADC, DAC, DSP)
- Integrated Filters (SC)
- Integrated Filters (Continuous-time and SC)

Filter: Amplifier or system that has a frequencydependent gain

- Filters are ideally linear devices
 - Analog filters characterized by linear differential equations
 - Digital filters characterized by linear difference equations
- Characteristics usually expressed as either frequency response or time domain response
- Transfer functions of filters with finite number of lumped elements (analog) or a finite number of additions (digital) are rational fractions with real coefficients
- Transfer functions of any realizable filter (finite elements or additions) have no discontinuities in either the magnitude or phase response

$$T(s) = \frac{\sum_{i=1}^{m} a_i s^i}{\sum_{i=1}^{n} b_i s^i} = \frac{N(s)}{D(s)}$$

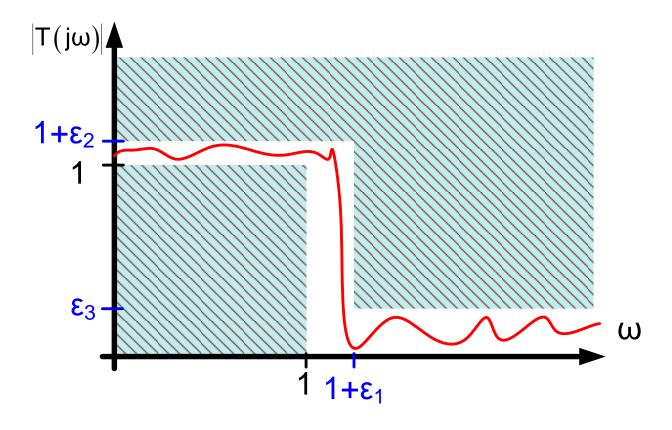
$$H(z) = \frac{\sum_{i=1}^{m} a_{i} z^{i}}{\sum_{i=1}^{n} b_{i} z^{i}} = \frac{N(z)}{D(z)}$$

Transfer functions characterize the steady-state response of a filter and are unaffected by the initial conditions

T(s) or H(z) can be obtained by taking the Laplace Transform or z-transform of the differential equation or difference equation and then solving for ratio of output to input

Often easier ways to obtain T(s) or H(z)

Any circuit that has a transfer function that does not enter the forbidden region is an acceptable solution from a performance viewpoint



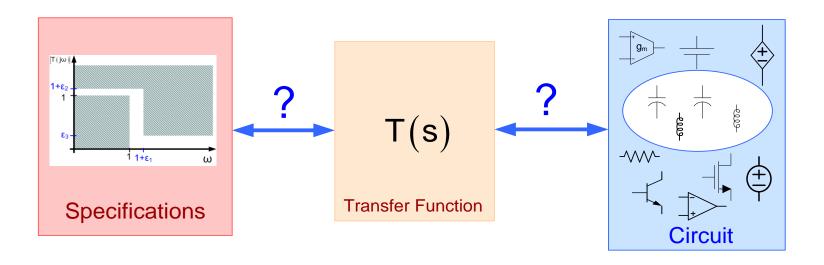
 Minor changes in specifications can have significant impact on cost and effort for implementing a filter

 Work closely with the filter user to determine what filter specifications are really needed

Observations:

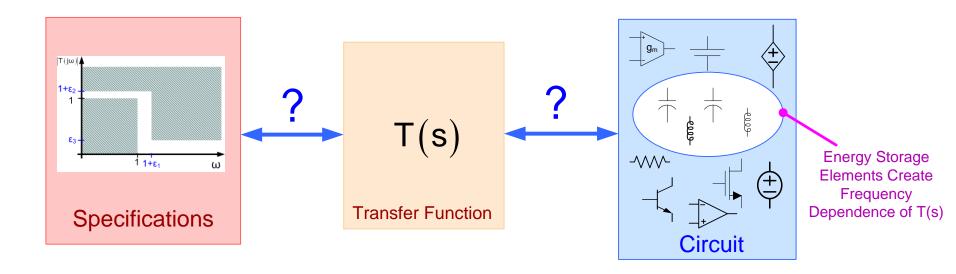
- All analog filter circuits with a finite number of lumped elements have a transfer function that is a rational fraction in s
- All digital filters have a transfer function that is a rational fraction in z
- Most of the characteristics of a filter are determined by the transfer function

(Consider continuous-time first)



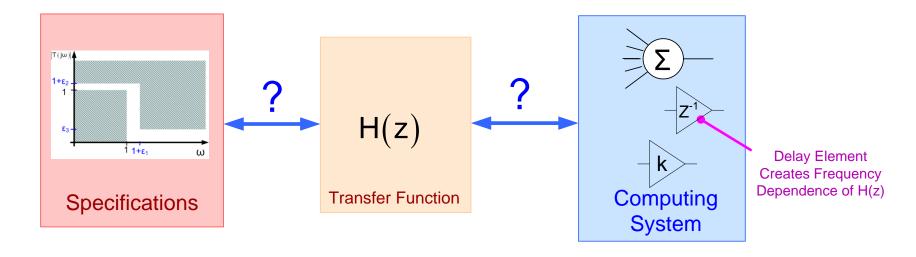
Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation

(Consider continuous-time first)

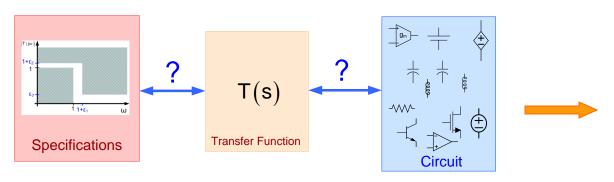


Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation

(Consider discrete-time domain)



Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation



Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation

Filter Design Process

Establish Specifications

- possibly $T_D(s)$ or $H_D(z)$
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation

- obtain acceptable transfer functions $T_A(s)$ or $H_A(z)$
- possibly acceptable realizable time-domain responses

Synthesis

- build circuit or implement algorithm that has response close to $T_{\text{A}}(s)$ or $H_{\text{A}}(z)$
- actually realize $T_R(s)$ or $H_R(z)$

Establish Specifications

- possibly $T_D(s)$ or $H_D(z)$
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation

- obtain acceptable transfer functions T_A(s) or H_A(z)
- possibly acceptable realizable time-domain responses

Synthesis

- build circuit or implement algorithm that has response close to T_A(s) or H_A(z)
- actually realize $T_R(s)$ or $H_R(z)$

Must understand the real performance requirements

Obtain an acceptable approximating function $(T_A(s) \text{ or } H_A(z))$

Design (synthesize) a practical circuit or system that has a transfer function close to the acceptable approximating function

Establish Specifications

- possibly $T_D(s)$ or $H_D(z)$
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation

- obtain acceptable transfer functions T_A(s) or H_A(z)
- possibly acceptable realizable time-domain responses

Synthesis

- build circuit or implement algorithm that has response close to T_A(s) or H_A(z)
- actually realize T_R(s) or H_R(z)

Must understand the real performance requirements

- Many acceptable specifications for a given application
- Some much better than others
- But often difficult to obtain even one that is useful

Obtain an acceptable approximating function $(T_A(s) \text{ or } H_A(z))$

- Many acceptable approximating functions for a given specification
- Some much better than others
- But often difficult to obtain even one!

Design (synthesize) a practical circuit or system that has a transfer function close to the acceptable approximating function

- Many acceptable circuits or systems for a given approximating function
 Some much better than others
- But often difficult to obtain even one!

Important to make good decisions at each step in the filter design process because poor decisions will not be absolved in subsequent steps

Establish Specifications

- possibly $T_D(s)$ or $H_D(z)$
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation

- obtain acceptable transfer functions T_A(s) or H_A(z)
- possibly acceptable realizable time-domain responses

Synthesis

- build circuit or implement algorithm that has response close to T_A(s) or H_A(z)
- actually realize $T_R(s)$ or $H_R(z)$

- Order of approximating function directly affects cost of implementation
- Number of energy storage elements in circuit is equal to the order of T(s) (neglecting energy storage element loops)
- High Q poles and zeros adversely affect cost (because component tolerances become tight)
- Cost of implementation (synthesis) is essentially independent of the quality of the approximation if the order is fixed
- Major effort over several decades was focused on the approximation problem

Establish Specifications

- possibly $T_D(s)$ or $H_D(z)$
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation

- obtain acceptable transfer functions T_A(s) or H_A(z)
- possibly acceptable realizable time-domain responses

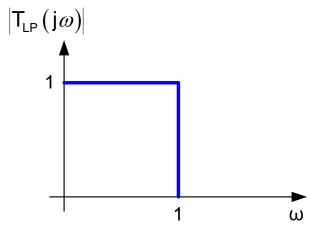
Synthesis

- build circuit or implement algorithm that has response close to $T_A(s)$ or $H_A(z)$
- actually realize $T_{\text{\scriptsize R}}(s)$ or $H_{\text{\scriptsize R}}(z)$

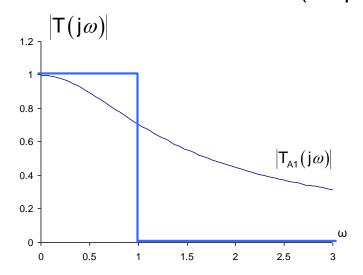
Some realizations are much better than others

- Cost
- Sensitivity
- Tunability
- Parasitic Effects
- Linearity
- Area
- Major effort over several decades focused on synthesis problem

Design a filter that approximates the ideal lowpass filter



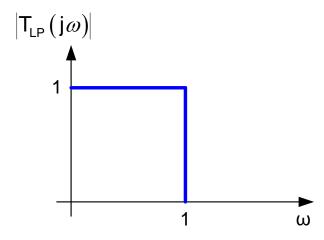
Desired filter magnitude response (No phase constraints)



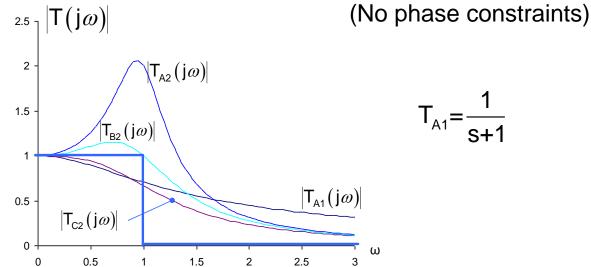
$$T_{A1} = \frac{1}{s+1}$$

One approximating function

Design a filter that approximates the ideal lowpass filter



Desired filter magnitude response (No phase constraints)



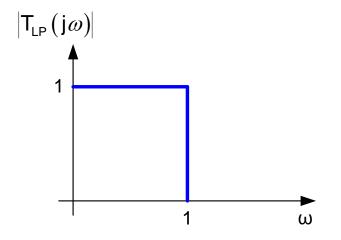
$$T_{A2} = \frac{1}{s^2 + 0.5s + 1}$$

$$T_{B2} = \frac{1}{s^2 + s + 1}$$

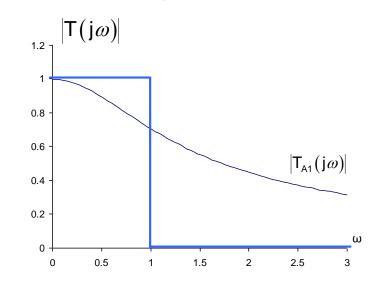
$$T_{B2} = \frac{1}{s^2 + s + 1}$$

Some additional approximating functions

Design a filter that approximates the ideal lowpass filter

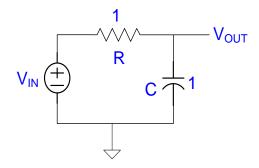


$$T_{A1} = \frac{1}{s+1}$$



Desired filter magnitude response

(No phase constraints)

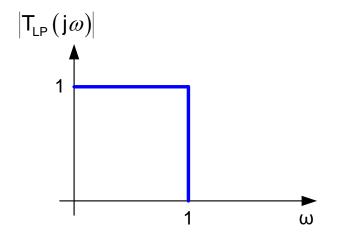


A circuit that realize
$$T_{A1}$$

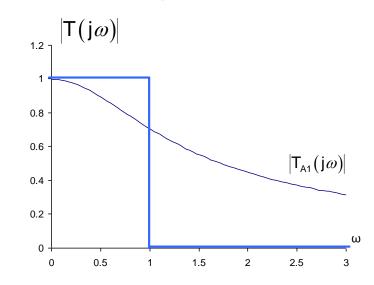
$$T(s) = \frac{1}{1 + RCs}$$

But not practical because C is too large!

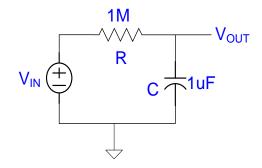
Design a filter that approximates the ideal lowpass filter



$$T_{A1} = \frac{1}{s+1}$$



Desired filter magnitude response (No phase constraints)

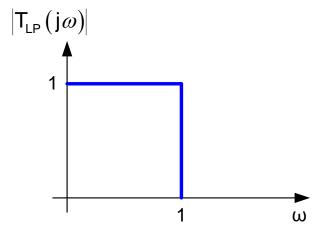


A circuit that realize
$$T_{A1}$$

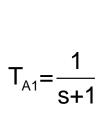
$$T(s) = \frac{1}{1 + RCs}$$

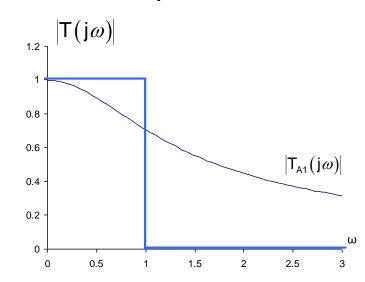
More practical (C must not be electrolytic)!

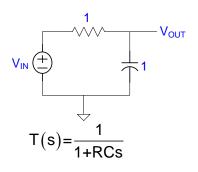
Design a filter that approximates the ideal lowpass filter

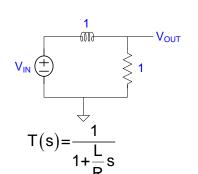


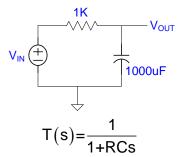
Desired filter magnitude response

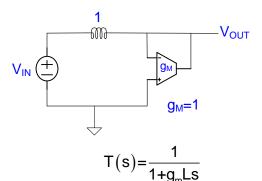


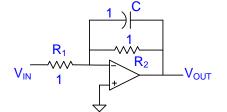












$$T(s) = \frac{R_{2}/R_{1}}{1 + R_{2}Cs}$$

Some additional circuits that realize T_{A1}

Filters always operate in the time domain

$$x_{\text{IN}(t)}$$
 Filter $x_{\text{OUT}(t)}$

Filters often characterized/designed in the frequency domain

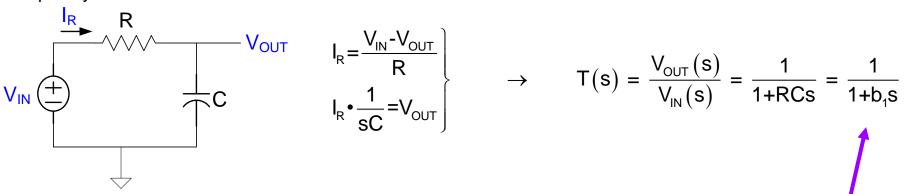
$$X_{IN}(s)$$
 $T(s)$

$$T(s) = \frac{X_{OUT}(s)}{X_{IN}(s)} \longrightarrow T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i} \qquad T(s) = \frac{\mathcal{L}(x_{OUT}(t))}{\mathcal{L}(x_{IN}(t))} \longrightarrow ?$$

m ≤ n

Example:

Frequency Domain

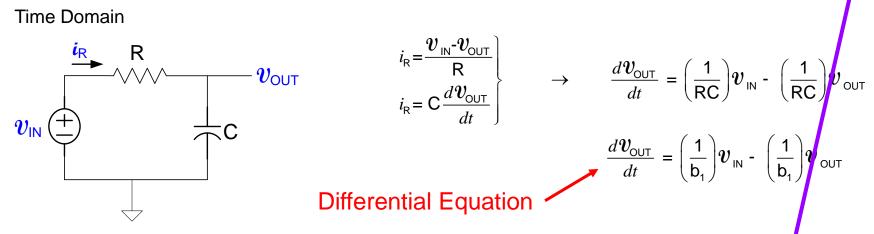


$$I_{R} = \frac{V_{IN} - V_{OUT}}{R}$$

$$I_{R} \cdot \frac{1}{sC} = V_{OUT}$$

$$T(s) = \frac{V_{OUT}(s)}{V_{IN}(s)} = \frac{1}{1 + RCs} = \frac{1}{1 + b_1 s}$$

Time Domain



$$i_{R} = \frac{v_{IN} - v_{OUT}}{R}$$

$$i_{R} = C \frac{dv_{OUT}}{dt}$$

$$\frac{d\mathbf{v}_{\mathsf{OUT}}}{dt} = \left(\frac{1}{\mathsf{RC}}\right)\mathbf{v}_{\mathsf{IN}} - \left(\frac{1}{\mathsf{RC}}\right)\mathbf{v}_{\mathsf{OU}}$$

Taking the Laplace transform of the differential equation, we obtain

$$\mathcal{L}\left(\frac{d\mathbf{v}_{\text{OUT}}}{dt}\right) = \left(\frac{1}{b_{1}}\right)\mathcal{L}(\mathbf{v}_{\text{IN}}) - \left(\frac{1}{b_{1}}\right)\mathcal{L}(\mathbf{v}_{\text{OUT}})$$

$$\text{sV}_{\text{OUT}} = \left(\frac{1}{b_{1}}\right)\text{V}_{\text{IN}} - \left(\frac{1}{b_{1}}\right)\text{V}_{\text{OUT}}$$

$$T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{1}{1 + b_1 s}$$

Time Domain and Frequency Domain Characterization Generalizing from the previous example:

Time Domain $\mathcal{X}_{\mathsf{IN}(\mathsf{t})}$ Filter $\mathcal{X}_{\mathsf{OUT}}(\mathsf{t})$

Elements in filter are {R's, C's,L's, indep sources, dep sources}

Assume n energy storage elements and no energy storage element loops in the circuit

The relationship between $\mathcal{X}_{\text{OUT}}(t)$ and $\mathcal{X}_{\text{IN}}(t)$ can always be expressed by a single time-domain differential equation as

$$\frac{d^n \mathbf{V}_{\text{OUT}}}{dt^n} = \sum_{k=0}^{m} \alpha_k \frac{d^k \mathbf{V}_{\text{IN}}}{dt^k} - \sum_{k=0}^{n-1} \beta_k \frac{d^k \mathbf{V}_{\text{OUT}}}{dt^k}$$

where the α_k and β_k are constants dependent on the values of the circuit elements

Taking the Laplace transform of this differential equation, we obtain

$$s^{n}V_{OUT} = \sum_{k=0}^{m} \alpha_{k} s^{k}V_{IN} - \sum_{k=0}^{n} \beta_{k} s^{k}V_{OUT}$$

Time Domain and Frequency Domain Characterization Generalizing from the previous example:

Time Domain

$$\mathcal{X}_{\mathsf{IN}(\mathsf{t})} \longrightarrow \mathsf{Filter} \stackrel{\mathcal{X}_{\mathsf{OUT}}(\mathsf{t})}{\longrightarrow}$$

$$s^{n}V_{OUT} = \sum_{k=0}^{m} \alpha_{k} s^{k}V_{IN} - \sum_{k=0}^{n-1} \beta_{k} s^{k}V_{OUT}$$

If we define $\beta_n=1$, this can be rewritten as

$$\left(\sum_{k=0}^{n} \beta_k s^k\right) V_{OUT} = \sum_{k=0}^{m} \alpha_k s^k V_{IN}$$

Thus, the transfer function can be written as

$$T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{\sum_{k=0}^{III} \alpha_k s^k}{\sum_{k=0}^{n} \beta_k s^k}$$

Time Domain

 $\mathcal{X}_{\mathsf{IN}}(\mathsf{t})$ Filter $\mathcal{X}_{\mathsf{OUT}}(\mathsf{t})$

Frequency Domain

$$X_{IN}(s)$$
 $T(s)$

$$\frac{d^{n}\mathbf{V}_{\text{OUT}}}{dt^{n}} = \sum_{k=0}^{m} \alpha_{k} \frac{d^{k}\mathbf{V}_{\text{IN}}}{dt^{k}} - \sum_{k=0}^{n-1} \beta_{k} \frac{d^{k}\mathbf{V}_{\text{OUT}}}{dt^{k}}$$

$$T(s) = \frac{\sum_{k=0}^{m} \alpha_k s^k}{\sum_{k=0}^{n} \beta_k s^k}$$

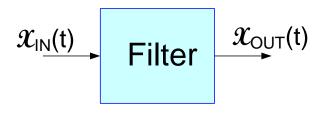
$$T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i}$$

How do the α_k and β_k parameters relate to the a_k and b_k parameters?

If we normalize the frequency-domain solution so that $b_n=1$, then $\alpha_k=a_k$ and $\beta_k=b_k$ for all k

Time Domain

Frequency Domain



$$X_{IN}(s)$$
 $T(s)$ $X_{OUT}(s)$

$$\frac{d^{n} \mathbf{V}_{\text{OUT}}}{dt^{n}} = \sum_{k=0}^{m} \alpha_{k} \frac{d^{k} \mathbf{V}_{\text{IN}}}{dt^{k}} - \sum_{k=0}^{n-1} \beta_{k} \frac{d^{k} \mathbf{V}_{\text{OUT}}}{dt^{k}}$$

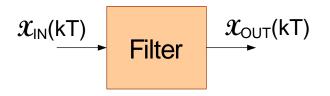
$$T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i}$$

Thus, the time-domain characterization of a filter which can be expressed as a single differential equation can be obtained directly from the transfer function T(s) obtained from a frequency-domain analysis of the circuit

This differential equation does not contain any initial condition information

Time Domain

Frequency Domain



$$X_{IN}(z)$$
 $H(z)$
 $X_{OUT}(z)$

$$\mathbf{v}_{\text{OUT}}$$
 (nT)= $\sum_{k=0}^{m} \alpha_k \mathbf{v}_{\text{IN}} ((\text{n-k})\text{T}) - \sum_{k=1}^{n-1} \beta_k \mathbf{v}_{\text{OUT}} ((\text{n-k})\text{T})$

If we define β_0 =1 and take the z-transform of the difference equation, obtain

$$H(z) = \frac{\sum_{k=0}^{m} \alpha_k z^{-k}}{\sum_{i=0}^{n} \beta_k z^{-k}}$$

$$H(z) = \frac{\sum_{i=0}^{m} a_i z^i}{\sum_{i=0}^{n} b_i z^i}$$

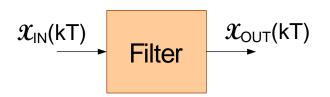
How do the α_k and β_k parameters relate to the a_k and b_k parameters?

If we normalize the frequency-domain solution so that b_n=1 and assume n≥m then

$$a_k = \alpha_{n-k}$$
 and $b_k = \beta_{n-k}$ for all k

Time Domain

Frequency Domain



$$X_{IN}(z)$$
 $H(z)$
 $X_{OUT}(z)$

$$\boldsymbol{v}_{\text{OUT}} \text{ (nT)} = \sum_{k=0}^{m} \alpha_k \boldsymbol{v}_{\text{IN}} \big((\text{n-k}) \text{T} \big) - \sum_{k=1}^{n-1} \beta_k \boldsymbol{v}_{\text{OUT}} \big((\text{n-k}) \text{T} \big)$$

$$H(z) = \frac{\sum_{i=0}^{m} a_i z^i}{\sum_{i=0}^{n} b_i z^i}$$

Thus, the time-domain characterization of a filter which can be expressed as a single difference equation can be obtained directly from the transfer function H(z) obtained from a frequency-domain analysis of the circuit

This difference equation does not contain any initial condition information

Filter Concepts and Terminology

$$T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i} = \frac{N(s)}{D(s)}$$

- A polynomial in s is said to be "integer monic" if the coefficient of the highest-order term is 1
- If D(s) is integer monic, then N(s) and D(s) for any filter are unique
- If D(s) is integer monic, then the a_k and b_k terms are unique
- The roots of N(s) are termed the zeros of the transfer function
- The roots of D(s) are termed the poles of the transfer function
- If N(s) and D(s) are of orders m and n respectively, then there are m zeros and n poles in T(s)

Filter Concepts and Terminology

$$X_{IN}(z) \longrightarrow H(z) \longrightarrow X_{OUT}(z)$$

$$H(z) = \frac{\sum_{i=0}^{m} a_i z^i}{\sum_{i=0}^{n} b_i z^i} = \frac{N(z)}{D(z)}$$

- A polynomial in z is said to be "integer monic" if the coefficient of the highest-order term is 1
- If D(z) is integer monic, then N(z) and D(z) are unique
- If D(z) is integer monic, then the a_k and b_k terms are unique
- The roots of N(z) are termed the zeros of the transfer function
- The roots of D(z) are termed the poles of the transfer function
- If N(z) and D(z) are of orders m and n respectively, then there are m zeros and n poles in H(z)

Stay Safe and Stay Healthy!

End of Lecture 2